Interchange Theorems for Hypergraphs and Factorization of Their Degree Sequences

نویسنده

  • Arkady A. Chernyak
چکیده

The aim of this paper is to unify interchange theorems and extend them to hypergraphs. To this end sufficient conditions for equality of the l1-distance between equivalence classes and the l1-distance between corresponding order-type functions are provided. The generality of this result is demonstrated by a number of new corollaries concerning the factorization and the switching completeness of degree sequences of graphs and hypergraphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Products of Hypergraphs: Unique Prime Factorization Theorems and Algorithms

It is well-known that all finite connected graphs have a unique prime factor decomposition (PFD) with respect to the strong graph product which can be computed in polynomial time. Essential for the PFD computation is the construction of the so-called Cartesian skeleton of the graphs under investigation. In this contribution, we show that every connected thin hypergraph H has a unique prime fact...

متن کامل

TAUBERIAN THEOREMS FOR THE EULER-NORLUND MEAN-CONVERGENT SEQUENCES OF FUZZY NUMBERS

Fuzzy set theory has entered into a large variety of disciplines of sciences,technology and humanities having established itself as an extremely versatileinterdisciplinary research area. Accordingly different notions of fuzzystructure have been developed such as fuzzy normed linear space, fuzzytopological vector space, fuzzy sequence space etc. While reviewing theliterature in fuzzy sequence sp...

متن کامل

no-homomorphism conditions for hypergraphs

In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.

متن کامل

Optimization over Degree Sequences

We introduce and study the problem of optimizing arbitrary functions over degree sequences of hypergraphs and multihypergraphs. We show that over multihypergraphs the problem can be solved in polynomial time. For hypergraphs, we show that deciding if a given sequence is the degree sequence of a 3-hypergraph is computationally prohibitive, thereby solving a 30 year long open problem. This implie...

متن کامل

Nonconvexity of the Set of Hypergraph Degree Sequences

It is well known that the set of possible degree sequences for a simple graph on n vertices is the intersection of a lattice and a convex polytope. We show that the set of possible degree sequences for a simple k-uniform hypergraph on n vertices is not the intersection of a lattice and a convex polytope for k > 3 and n > k + 13. We also show an analogous nonconvexity result for the set of degre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999